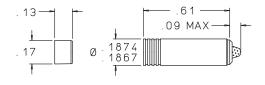


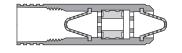
PRODUCT CAPABILITY SHEET

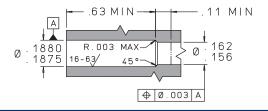
HIGH PRESSURE DUAL METERING FLOW CONTROL

.187 and .281 Diameter Models (5000 psi)

The Lee Company's High Pressure Dual Metering Flow Control valve is a two way restrictor that allows a designer to specify a different metered flow rate in each direction. This valve is ideal for high pressure hydraulic applications with system pressures up to 5000 psi. It features all stainless steel construction for durability and long life and it is available in .187 and .281 diameter models. Each Lee Dual Metering Flow Control is 100% tested in both flow directions to ensure reliable, consistent performance.

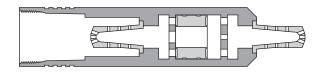


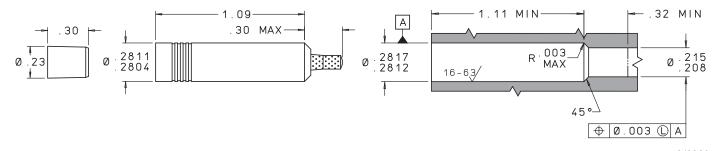

187 HIGH PRESSURE DUAL METERING FLOW CONTROL


■ Measures only 0.187 of an inch in diameter and 0.61 of an inch in length

Metered flow rate range: 500 to 20,000 Lohms
Nominal system pressure: up to 5000 psi

■ Nominal weight: 2.5 grams


281 HIGH PRESSURE DUAL METERING FLOW CONTROL


■ Measures only 0.281 of an inch in diameter and 1.09 inches in length

■ Metered flow rate range: 250 to 10,000 Lohms

■ Nominal system pressure: up to 5000 psi

■ Nominal weight: 6 grams

© 2020 The Lee Company

187 HIGH PRESSURE DUAL METERING FLOW CONTROL

MATERIALS					
PART	MATERIAL	SPECIFICATION	PASSIVATE		
Shuttle Plate	15-5PH CRES	AMS 5659	ASTM-A-967		
Orifice Plate	15-5PH CRES	AMS 5659	ASTM-A-967		
Pin	15-5PH CRES	AMS 5659	ASTM-A-967		
Body	304 CRES	AMS 5639	ASTM-A-967		
Spacer	13-8 MO	AMS 5629	ASTM-A-967		
Screens	15-5PH CRES	AMS 5659	ASTM-A-967		

281 HIGH PRESSURE DUAL METERING FLOW CONTROL

MATERIALS					
PART	MATERIAL	SPECIFICATION	PASSIVATE		
Shuttle Plate	15-5PH CRES	AMS 5659	ASTM-A-2700		
Orifice Plate	15-5PH CRES	AMS 5659	ASTM-A-2700		
Pin	15-5PH CRES	AMS 5659	ASTM-A-2700		
Body	15-5PH CRES	AMS 5659	ASTM-A-2700		
Spacer	15-5PH CRES	AMS 5659	ASTM-A-2700		
Screens	440C CRES	AMS 5630	ASTM-A-2700		

LEE LOHM LAWS

LOHM LAWS (Liquids)

Every engineer will be interested in our simple system of defining the fluid resistance of Lee hydraulic components.

Just as the OHM is used in the electrical industry, we find that we can use a liquid OHM or "Lohm" to good advantage on all hydraulic computations.

When using the Lohm system, you can forget about coefficients of discharge and dimensional tolerances on drilled holes. These factors are automatically compensated for in the Lohm calculations, and confirmed by testing each component to establish flow tolerances. The resistance to flow of any fluid control component can be expressed in Lohms.

The Lohm has been selected so that a 1 Lohm restriction will permit a flow of 100 gallons per minute of water with a pressure drop of 25 psi at a temperature of 80° F.

LIQUID FLOW FORMULA

The following formulas are presented to extend the use of the Lohm laws to many different liquids, operating over a wide range of pressure conditions.

These formulas introduce compensation factors for liquid density and viscosity. They are applicable to any liquid of known properties, with minimum restrictions on pressure levels or temperature.

The units constant (K) eliminates the need to convert pressure and flow parameters to special units.

Volumetric
$$L = \frac{KV}{I} \sqrt{\frac{H}{S}}$$
 Gravimetric $L = \frac{KV}{w} \sqrt{HS}$

NOMENCLATURE

L = Lohms

S = Specific gravity*

H = Differential pressure

V = Viscosity compensation factor**

I = Liquid flow rate: Volumetric

w = Liquid flow rate: Gravimetric

K = Units Constant – Liquid (see chart below)

*S = 1.0 for water at 80°F.

**V = 1.0 for water at 80°F.

For other fluids and temperatures, contact your Lee Sales Engineer or visit us at www.theleeco.com.

LIQUID FLOW - UNITS CONSTANT K

VOLUMETRIC FLOW UNITS					
	Pressure Units				
Flow Units	psi	bar	kPa		
GPM	20	76.2	7.62		
L/min	75.7	288	28.8		
ml/min	75 700	288 000	28 800		
in³/min	4620	17600	1760		

GRAVIMETRIC FLOW UNITS					
	Pressure Units				
Flow Units	psi	bar	kPa		
PPH	10 000	38 100	3810		
gm/min	75 700	288 000	28 800		

9/2020